Robot Motion Planning in Dynamic Environments

نویسندگان

  • Paolo Fiorini
  • Zvi Shiller
چکیده

This paper presents a method for computing the motions of a robot in dynamic environments, subject to the robot dynamics and its actuator constraints. This method is based on the concept of Velocity Obstacle, which deenes the set of feasible robot velocities that would result in a collision between the robot and an obstacle moving at a given velocity. The avoidance maneuver at a spe-ciic time is thus computed by selecting robot's velocities out of that set. A trajectory consisting of a sequence of avoidance maneuvers at discrete time intervals is generated by a search of a tree of avoidance maneuvers. An exhaustive search computes near minimum-time trajectories, whereas a heuristic search generates feasible trajectories for on-line applications. These trajectories are compared to the optimal trajectory computed by a dynamic optimization that minimizes motion time, subject to robot dynamics, its actuator limits and the state inequality constraints due to the moving obstacles. This approach is demonstrated for planning the trajectory of an automated vehicle in an Intelligent Vehicle Highway System scenario .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

High-Speed Navigation Using the Global Dynamic Window Approach

Many applications in mobile robotics require the safe execution of a collision-free motion to a goal position. Planning approaches are well suited for achieving a goal position in known static environments, while real-time obstacle avoidance methods allow reactive motion behavior in dynamic and unknown environments. This paper proposes the global dynamic window approach as a generatlization of ...

متن کامل

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

Time optimal trajectory planning in dynamic environments

This paper presents a method for motion planning in dynamic environments, subject to robot dynamics and ac-tuator constraints. The time optimal trajectory is computed by rst generating an initial guess using the concept of velocity obstacle. The initial guess, computed by a global search over a tree of avoidance maneuvers, is then optimized using a dynamic optimization. This method is applicabl...

متن کامل

Fast and Bounded Probabilistic Collision Detection in Dynamic Environments for High-DOF Trajectory Planning

We present a novel approach to perform probabilistic collision detection between a high-DOF robot and high-DOF obstacles in dynamic, uncertain environments. In dynamic environments with a highDOF robot and moving obstacles, our approach efficiently computes accurate collision probability between the robot and obstacles with upper error bounds. Furthermore, we describe a prediction algorithm for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995